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Arby

Surrogate models
from training data

Arby is a fully data-driven Python module to construct surrogate models, reduced bases and empirical interpolants
from training data.

This module implements a type of Reduced Order Modeling technique for reducing the computational complexity of
mathematical models in numerical simulations.
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CHAPTER
ONE

INSTALLATION

To install the latest stable version of Arby from PyPI:

$ pip install arby

To install the developer version (may be unstable):

$ git clone https://github.com/aaronuv/arby.git
$ cd arby
$ pip install .
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CHAPTER
TWO

TUTORIAL

2.1 Simple pendulum: build a surrogate model

In this tutorial we build a surrogate model for the damped simple pendulum using Arby. The physical setting is shown
below.

This system can be described by the ordinary differential equation (ODE)

é:—bé—%sinﬁ 2.1)

where g, [ denote the gravity strenght and the pendulum longitude, respectively. The parameter b is the damping factor.
We can decompose the 2nd order ODE above in two 1st order ODEs leading to the desired pendulum equations

0=w (2.2)
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2.1.1 Solving the pendulum equations

We import first some Python packages for handling and visualizing data.

import numpy as np

import matplotlib.pyplot as plt

Also we need an ODE solver. We use a module from the SciPy Python package.

from scipy.integrate import odeint

Let’s define the ODE system and fix some initial conditions

def pend(y, t, b, ):
y =Y
dydt = [, -b* - *np.sin()]

return dydt

# set friction strength
b =20.2

# set initial conditions
y0 = [np.pi/2, 0.]

# set a time discretization
times = np.linspace(0,50,1001)

# plot a simple solution
= 1.
sol = odeint(pend,y®, times, (b,))

Lets see how a solution looks

plt.figure(figsize=(10,4))

plt.plot(times, sol[:,0], label=f'Solution at $\lambda$={}', lw=1.8)
plt.xlabel('t")

plt.legend()

<matplotlib.legend.Legend at 0x7f3ea40e6a60>
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2.1.2 Building the surrogate

Import the Arby main class for building surrogates

from arby import ReducedOrderModel as ROM

and define a discretization of the parametric domain. We chose the domain for X as [1, 5] and a discretization of 101
points.

param = np.linspace(1,5,101)

Lets build a training set.
training = []
for in param:

sol = odeint(pend,y®, times, (b,))
training.append(sol[:,0])

So far we have the main ingredients for building a surrogate for the pendulum system. Finally, create a pendulum model
as a ROM object

pendulum = ROM(training, times, param, greedy_tol=1le-14, poly_deg=5)

and simply call/build the surrogate for some parameter value

pendulum. surrogate(l.14)

array([ 1.57079633, 1.56937605, 1.56513412, ..., -0.00282289,
-0.00331644, -0.00379569])

That’s all! We built a surrogate model for pendulum solutions. Now, for the sake of brevity, name the surrogate function.

surr = pendulum.surrogate

We want the surrogate to produce predictions. So lets look for an out-of-sample parameter to build a prediction.

2.1. Simple pendulum: build a surrogate model 7
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param

[20]: array([l. , 1.04, 1.08, 1.12, 1.16, 1.2 , 1.24, 1.28, 1.32, 1.36, 1.4 ,
1.44, 1.48, 1.52, 1.56, 1.6 , 1.64, 1.68, 1.72, 1.76, 1.8 , 1.84,
1.88, 1.92, 1.96, 2. , 2.04, 2.08, 2.12, 2.16, 2.2 , 2.24, 2.28,
2.32, 2.36, 2.4 , 2.44, 2.48, 2.52, 2.56, 2.6 , 2.64, 2.68, 2.72,
2.76, 2.8 , 2.84, 2.88, 2.92, 2.96, 3. , 3.04, 3.08, 3.12, 3.16,
3.2, 3.24, 3.28, 3.32, 3.36, 3.4 , 3.44, 3.48, 3.52, 3.56, 3.6 ,
3.64, 3.68, 3.72, 3.76, 3.8 , 3.84, 3.88, 3.92, 3.96, 4. , 4.04,
4.08, 4.12, 4.16, 4.2 , 4.24, 4.28, 4.32, 4.36, 4.4 , 4.44, 4.48,
4.52, 4.56, 4.6 , 4.64, 4.68, 4.72, 4.76, 4.8 , 4.84, 4.88, 4.92,
4.96, 5. 1)
We choose par = 3.42. Now compare prediction and true solution.
par = 3.42
sol = odeint(pend,y®, times, (b,par))[:,0]
fig, ax = plt.subplots(2,1, figsize=(10,6))
ax[0].plot(times, surr(par), 'r', lw=2, label='$_» (€L 2D
ax[0] .plot(times, sol, 'b-.', 1lw=2, label="$_(t)$"')
ax[1].plot(times, surr(par), 'r', lw=2, label="§$_»4 (W)
ax[1].plot(times, sol, 'b-.', 1lw=2, label="$_(t)$")
ax[1].set(xlim=(0,10))
ax[1].set(xlabel="$t$")
ax[0].set_title('Function curves at = 1.012")
ax[0].legend(fontsize = 'large')
<matplotlib.legend.Legend at 0x7f23db2fe670>
Function curves at A = 1.012
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Nice! At least they match at eyeball resolution.

How fast is it with respect to solving the whole ODE system for some
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parameter?

To respond that we perform a simple profiling for evaluating computation times for both, surrogate and ODE solver

= 2.17
%timeit -t sol = odeint(pend,y®, times, (b,))

5.84 ms + 389 us per loop (mean + std. dev. of 7 runs, 100 loops each)

%timeit -t pendulum.surrogate()

1.41 ms + 95.5 ps per loop (mean = std. dev. of 7 runs, 1000 loops each)

The surrogate is ~ 4 times faster than solving the ODE system.

2.1.3 Benchmarks

We'd like to quantify the accuracy of the surrogate. To this, we perform a benchmark measuring the Lo relative error
between the surrogate and a dense validation or test set of true solutions

2 ||9§\urr _ 93\7”11,@”2
6()\) T Hetrue”Q
A

where

16]2 = /02(t)dt

# name the norm tool from the integration object
norm = pendulum.basis_.integration.norm
# create a dense validation set (10x the size of the training set)
param_val = np.linspace(l,5,1001)
# compute errors
errors = []
for in param_val:
sol = odeint(pend,y0®, times, (b,))[:,0]
errors.append(norm(sol - surr())/norm(sol))

Plot the errors

fig, ax = plt.subplots(figsize=(10,4))

ax.plot(param_val, errors, lw=1.8)
ax.set_yscale('log')
ax.yaxis.set_ticks_position('both')
ax.tick_params(direction="'in', which="both")
ax.xaxis.set_ticks_position('both"')
ax.set_xlabel('")

ax.set_ylabel('$L_2$ errors')
ax.set_title('Validation errors')

Text (0.5, 1.0, 'Validation errors')

2.1. Simple pendulum: build a surrogate model 9
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Validation errors
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Which is the parameter corresponding to the largest error?

[27]: worst_lambda = param_val[np.argmax(errors)]

[28]: # plot the overlap between the surrogate and the true solution model
# at the worst parameter
par = worst_lambda
sol = odeint(pend,y®, times, (b,par))[:,0]
fig, ax = plt.subplots(2,1, figsize=(10,6))
ax[0] .plot(times, surr(par), 'r', lw=2, label='$_A{surrj(t)$")

ax[0] .plot(times, sol, 'b-.', 1lw=2, label="$_(t)$")
ax[1].plot(times, surr(par), 'r', lw=2, label='$_A{surr}(t)$")
ax[1].plot(times, sol, 'b-.', lw=2, label="$_(t)$")

ax[1].set(xlim=(0,10))

ax[1].set(xlabel="$t$")

ax[0].set_title(f'Function curves at = {worst_lambdal')
ax[0].legend(fontsize = 'large')

[28]: <matplotlib.legend.Legend at 0x7£23d9cbb4cO>
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Function curves at A = 1.012
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The curves are indistinguishable to eyeball resolution even for the worst case scenario.

2.2 Build a reduced basis

Lets go deeper. The Reduced Basis Method is a reduced order modeling technique for building a near-optimal basis
of functions that spans the training set at an user-specified tolerance. The basis is built by iteratively choosing those
training functions which best represent the entire set. In this way, as opposed to other dimensional reduction techniques
such as Proper Orthogonal Decomposition, the reduced basis is directly interpretable since it is built out from training
functions. Another kindness of this approach is that whenever we want more accuracy we just add more basis elements
to the computed one: the construction is hierarchical.

Suppose we have a training set { fy, } Y., of parameterized real functions. This set may represent a non-linear model,
perhaps solutions to PDEs. We’d like, if possible, to reduce the dimensionality/complexity of it by finding a compact
representation in terms of linear combinations of basis elements {e; }?_,, that is,

n
f= Z Ci€j .
i=1

f is an arbitrary training function and the ¢;’s are the projection coefficients < e;, f > computed in some inner product
< -,- > on the space of functions. The RB method chooses a set of optimal functions belonging to the training set itself
which defines a finite dimensional subspace capable to represent the entire training set up to a user-specified tolerance.

To build a reduced basis with Arby, you just provide the training set of functions and the discretization of the physical
variable z to the reduced_basis function. The later is to define the integration scheme that is used for computing
inner products. For the pendulum example,

2.2. Build a reduced basis 11
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from arby import reduced_basis

rb_data = reduced_basis(training_set=training,
physical_points=times, greedy_tol=1e-12)

The greedy_tol parameter is the accuracy in the Ly-norm that our reduced basis is expected to achieve. The out-
put rb_data contains all the relevant information related to greedy calculations. It contains a basis object which
comprises the reduced basis and several utilities for interacting with it. The other outputs are the greedy errors
and indices, and the projection_matrix, which stores projection coefficients built in the greedy algorithm. For
example, to call the reduced basis array do

rb_data.basis.data

The reduced basis is an orthonormalized version of the set of functions selected by the greedy algorithm and indexed
by the greedy indices. You can obtain those functions by filtering the training set

training_set[rb_data.indices]

For conditioning purposes, the greedy algorithm orthonormalizes the basis.

The number of basis elements rb_data.basis.Nbasis_ represents the dimension of the reduced space. It is not
a fixed quantity since we can change it by modifying the greedy tolerance. The lower the tolerance, the bigger the
number of basis elements needed to reach that accuracy. With Arby, we can tune the reduced basis accuracy through
the greedy_tol parameter.

To quantify the representation effectiveness of the reduced basis to approximate a solution f, we can compute the norm
of the difference between a training function f and its projected version using the tools coming inside the rb_data.
basis class object.

projected_f = rb_data.basis.project(f)
norm = rb_data.basis.integration.norm
L2_error = norm(f - projected_f)

Or take a shortcut by doing

projection_error = rb_data.basis.projection_error
squared_L2_error = projection_error(f)

The output is the square version of the error computed in the previous code block.

2.3 Further reading

* This package was built upon previous work developed in the field of Gravitational Wave (GW) science. Important
papers are

— Reduced basis catalogs for gravitational wave templates
— Towards beating the curse of dimensionality for gravitational waves using Reduced Basis
— Fast prediction and evaluation of gravitational waveforms using surrogate models

 For some theoretical aspects on the Reduced Basis greedy algorithm and the Empirical Interpolation Method
check

— Two-step greedy algorithm for reduced order quadratures

— A Note on QR-Based Model Reduction: Algorithm, Software, and Gravitational Wave Applications

12 Chapter 2. Tutorial
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— On the stability and accuracy of the Empirical Interpolation Method and Gravitational Wave Surrogates
¢ For a thorough review on Reduced Order Methods as implemented in this package, check
— Reduced Order and Surrogate Models for Gravitational Waves

* For nice visuals on the application of surrogate modeling in GW Science check this.

2.3. Further reading 13
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CHAPTER
THREE

MODULE API

3.1 Module arby.rom

Reduced Order Modeling module.

class arby.rom.ReducedOrderModel (training_set, physical_points, parameter_points, integration_rule: str =
'riemann’, greedy_tol: float = le-12, poly_deg: int = 3)
Build reduced order models from training data.

This class comprises a set of tools to build and handle reduced bases, empirical interpolants and predictive models
from pre-computed training set of functions. The underlying or ground truth model describing the training set
is a real function g(v,x) parameterized by a training parameter v. The physical variable x belongs to a domain
for which an inner product can defined. The surrogate model is built bringing together the Reduced Basis (RB)
greedy algorithm and the Empirical Interpolation Method (EIM) to work in synergy towards a predictive model
for the ground truth model.

Parameters
* training_set (array_like) — Array of training functions.
» physical_points (array_like) — Array of physical points.
» parameter_points (array_like) — Array of parameter points.

e integration_rule (str, optional) — The quadrature rule to define an integration
scheme. Default = “riemann”.

» greedy_tol (float, optional)— The greedy tolerance as a stopping condition for the
reduced basis greedy algorithm. Default = le-12.

* poly_deg (int, optional)— Degree <=5 of polynomials used for splines. Default = 3.

Examples

Build a surrogate model

>>> from arby import ReducedOrderModel as ROM

Input the three most important parameters (the others are optional).

>>> model = ROM(training_set, physical_points, parameter_points)

Build/evaluate the surrogate model. The building stage is done once and for all at the first call. It could take
some time for large training sets. For this reason it is called the offline stage. Subsequent calls will invoke the
already built surrogate model and just evaluates it. That corresponds to the online stage.

15
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>>> model . surrogate(parameter)

For attempting to improve the model’s accuracy without the addition of more training functions, tune the
class parameters greedy_tol and poly_deg to control the precision of the reduced basis (see the arby.
reduced_basis method) or the internal splines model.

property Ntrain_
Return the number of training functions or parameter points.

property Nsamples_
Return the number of samples or physical points.

property basis_
Return a reduced basis object.

The reduced basis is computed at the first call and stored as a class object of arby.Basis, which comprises
several tools for handling bases. See also the arby.reduced_basis documentation.

property greedy_indices_
Greedy indices from the RB algorithm.

See the arby.reduced_basis documentation.

property greedy_errors_
Errors computed in the RB algorithm.

See the arby.reduced_basis documentation.

property projection_matrix_
Projection coefficients from the RB algorithm.

See the arby.reduced_basis documentation.

property eim_
Return EIM data.

See arby.Basis.eim_ documentation.

surrogate (param)
Evaluate the surrogate model at parameter/s.

Build a surrogate model valid for the entire parameter domain. The building stage is performed only once for
the first function call. For subsequent calls, the method invokes the already fitted model and just evaluates
it. The output is an array storing surrogate evaluations at the parameter/s.

Parameters param (float or array_like(float)) — Point or set of parameters inside the
parameter domain.

Returns h_surrogate — The evaluated surrogate function for the given parameters.

Return type numpy.ndarray

16 Chapter 3. Module API
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3.2 Module arby.basis

Basis analysis module.

class arby.basis.EIM(interpolant: numpy.ndarray, nodes: list)
Container for EIM information.

Parameters
* interpolant (numpy.ndarray) — Interpolant matrix.
e nodes (1ist)— EIM nodes.

class arby.basis.RB(basis: numpy.ndarray, indices: numpy.ndarray, errors: numpy.ndarray,
projection_matrix: numpy.ndarray)
Container for RB information.

Parameters
* basis (np.ndarray) — Reduced basis object.
» indices (np.ndarray) — Greedy indices.
* errors (np.ndarray) — Greedy errors.
* projection_matrix (np.ndarray) — Projection coefficients.

class arby.basis.Basis(data, integration: numpy.ndarray)
Basis object and utilities.

Create a basis object introducing an orthonormalized set of functions data and an integration class instance
to enable integration utilities for the basis.

Parameters
e data (numpy.ndarray) — Orthonormalized basis.
e integration (arby.integrals.Integration) — Instance of the Integration class.

property Nbasis_: int
Return the number of basis elements.

property eim_: arby.basis.EIM
Implement EIM algorithm.

The Empirical Interpolation Method (EIM) [TiglioAndVillanueva2021] introspects the basis and selects a
set of interpolation nodes from the physical domain for building an interpolant matrix using the basis
and the selected nodes. The interpolant matrix can be used to approximate a field of functions for which
the span of the basis is a good approximant.

Returns Container for EIM data. Contains (interpolant, nodes).
Return type arby.basis. EIM

projection_error (4, s=(None))
Compute the squared projection error of a function h onto the basis.

The error is computed in the L2 norm (continuous case) or the 2-norm (discrete case), that is, ||h - P h||*2,
where P denotes the projector operator associated to the basis.

Parameters
e h (np.ndarray) — Function to be projected.

* s (tuple, optional) — Slice the basis. If the slice is not provided, the whole basis is
considered. Default = (None,)

3.2. Module arby.basis 17
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Returns error — Square of the projection error.
Return type float

project(h, s=(None))
Project a function h onto the basis.

This method represents the action of projecting the function h onto the span of the basis.

Parameters
* h (np.ndarray) — Function or set of functions to be projected.
* s (tuple, optional) — Slice the basis. If the slice is not provided, the whole basis is

considered. Default = (None,)

Returns projected_function — Projection of h onto the basis.
Return type np.ndarray

interpolate (/)
Interpolate a function h at EIM nodes.

This method uses the basis and associated EIM nodes (see the arby.Basis.eim_ method) for interpola-
tion.

Parameters h (np.ndarray) — Function or set of functions to be interpolated.

Returns h_interpolated — Interpolated function at EIM nodes.

Return type np.ndarray
arby.basis.gram_schmidt (functions, integration, max_iter=3) — numpy.ndarray
Orthonormalize a set of functions.
This algorithm implements the Iterated, Modified Gram-Schmidt (GS) algorithm [Hoffmann1989] to build an
orthonormal basis from a set of functions.
Parameters

e functions (array_like, shape=(m, L))- Functions to be orthonormalized, where m
is the number of functions and L is the length of the sample.

e integration (arby.integrals.Integration) — Instance of the Integration class for
defining inner products.

e max_iter (int, optional)- Maximum number of iterations. Default = 3.
Returns basis — Orthonormalized array.

Return type numpy.ndarray

Raises ValueError - If functions are not linearly independent for a given tolerance.

References

arby.basis.reduced_basis (training_set, physical_points, integration_rule="riemann', greedy_tol=1e-12,
normalize=False) — arby.basis.RB

Build a reduced basis from training data.

This function implements the Reduced Basis (RB) greedy algorithm for building an orthonormalized reduced
basis out from training data. The basis is built for reproducing the training functions within a user specified
tolerance [TiglioAndVillanueva2021] by linear combinations of its elements. Tuning the greedy_tol parameter
allows to control the representation accuracy of the basis.

18 Chapter 3. Module API
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The integration_rule parameter specifies the rule for defining inner products. If the training functions (rows
of the training_set) does not correspond to continuous data (e.g. time), choose "euclidean". Otherwise
choose any of the quadratures defined in the arby.Integration class.

Set the boolean normalize to True if you want to normalize the training set before running the greedy algorithm.
This condition not only emphasizes on structure over scale but may leads to noticeable speedups for large datasets.

The output is a container which comprises RB data: a basis object storing the reduced basis and handling tools
(see arby .Basis); the greedy errors corresponding to the maxima over the training set of the squared pro-
jection errors for each greedy swept; the greedy indices locating the most relevant training functions used for
building the basis; and the projection_matrix storing the projection coefficients generated by the greedy al-
gorithm. For example, we can recover the training set (more precisely, a compressed version of it) by multiplying
the projection matrix with the reduced basis.

Parameters
* training_set (numpy.ndarray) — The training set of functions.
» physical_points (numpy.ndarray) — Physical points for quadrature rules.

e integration_rule (str, optional) — The quadrature rule to define an integration
scheme. Default = “riemann”.

» greedy_tol (float, optional) — The greedy tolerance as a stopping condition for the
reduced basis greedy algorithm. Default = le-12.

e normalize (bool, optional) - True if you want to normalize the training set. Default =
False.

Returns Container for RB data. Contains (basis, errors, indices, projection_matrix).
Return type arby.basis.RB

Raises ValueError - If training_set.shape[1] doesn’t coincide with quadrature rule weights.

Notes

If normalize is True, the projection coefficients are with respect to the original basis but the greedy errors are
relative to the normalized training set.

References

3.3 Module arby.integrals

Integration schemes module.

class arby.integrals.Integration(interval, rule='"riemann")
Integration scheme.

This class fixes a frame for performing integrals, inner products and derived operations. An integral is defined
by a quadrature rule composed by nodes and weights which are used to construct a discrete approximation to the
true integral (or inner product).

For completeness, an “euclidean” rule is available for which inner products reduce to simple discrete dot products.
Parameters

e interval (numpy.ndarray) — Equispaced set of points as domain for integrals or inner
products.

3.3. Module arby.integrals 19
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e rule (str, optional)— Quadrature rule. Default = “riemann”. Available = (“riemann”,
“trapezoidal”, “euclidean’)

integral (f)
Integrate a function.

Parameters f (np.ndarray) — Real or complex numbers array.

dot(f, &)
Return the dot product between functions.

Parameters
* f (np.ndarray) — Real or complex numbers array.
* g (np.ndarray) — Real or complex numbers array.

norm(f)
Return the norm of a function.

Parameters f (np.ndarray) — Real or complex numbers array.

normalize(f)
Normalize a function.

Parameters f (np.ndarray)— Real or complex numbers array.

20 Chapter 3. Module API



CHAPTER
FOUR

QUICK USAGE

Suppose we have a set of real functions parametrized by a real number A. This set, the training set, represents an
underlying parametrized model f(x) with continuous dependency in A. Without complete knowledge about fy, we’d
like to produce an accurate approximation only through the access to the training set.

With Arby we can build an accurate surrogate model to represent the training set. For simplicity, suppose a discretiza-
tion of the parameter domain [par_min, par_max] with Ntrain samples indexing the training set

params = np.linspace(par_min, par_max, Ntrain)

and a discretization of the x domain [a, b] in Nsamples points

x_samples = np.linspace(a, b, Nsamples)

Next, we build a training set

training_set = [f(par, x_samples) for par in params]

that has shape (Ntrain, Nsamples).

Then we build the surrogate model with Arby by doing:

from arby import ReducedOrderModel as ROM

f_model = ROM(training_space=training_set,
physical_interval=x_samples,
parameter_interval=params)

With f_model we can get function samples for any parameter par in the interval [par_min, par_max] simply by
calling it:

f_model_at_par = f_model.surrogate(par)
plt.plot(x_samples, model_at_par)
plt.show()

21
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